
Journal Pre-proof

Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power
prediction

Jordan Nielson, Kiran Bhaganagar, Rajitha Meka, Adel Alaeddini

PII: S0360-5442(19)31968-1

DOI: https://doi.org/10.1016/j.energy.2019.116273

Reference: EGY 116273

To appear in: Energy

Received Date: 12 March 2019

Revised Date: 24 September 2019

Accepted Date: 1 October 2019

Please cite this article as: Nielson J, Bhaganagar K, Meka R, Alaeddini A, Using atmospheric inputs
for Artificial Neural Networks to improve wind turbine power prediction, Energy (2019), doi: https://
doi.org/10.1016/j.energy.2019.116273.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.energy.2019.116273
https://doi.org/10.1016/j.energy.2019.116273
https://doi.org/10.1016/j.energy.2019.116273


 

LA REVUE GESTION ET ORGANISATION 00 (2014) 000–000 
 

  

 

Available online at www.sciencedirect.com 
 

 
    

Journal homepage: www.elsevier.com/locate/rgo 
 

 

 
* Kiran Bhaganagar. Kiran.bhaganagar@utsa.edu 

Using Atmospheric Inputs for Artificial Neural Networks to Improve 
Wind Turbine Power Prediction 

Jordan Nielsona, Kiran Bhaganagarb*, cRajitha Meka, and dAdel Alaeddini 
a Ph.D. Candidate, Department of Mechanical Engineering, University of Texas at San Antonio, Laboratory of Turbulence, 
Sensing and Intelligence Systems, San Antonio, Texas, USA 
b Associate Professor Department of Mechanical Engineering, University of Texas at San Antonio, Laboratory of 
Turbulence, Sensing and Intelligence Systems, San Antonio, Texas, USA *Corresponding Author 
c Ph.D. Student, Department of Mechanical Engineering, University of Texas at San Antonio  

d Associate Professor Department of Mechanical Engineering, University of Texas at San Antonio 

 

A R T I C L E  I N F O 

Article history:  

Received 00 December 00 

Received in revised form 00 January 00 

Accepted 00 February 00 

 

Keywords: 

Each keyword to start on a new line  

 
A B S T R A C T 

A robust machine learning methodology is used to generate a site-
specific power-curve of a full-scale isolated wind turbine operating in an 
atmospheric boundary layer to drastically improve the power predictions, and, 
thus, the forecasting of the monthly energy production estimates. The study has 
important implication in measuring the financial feasibility of wind farms by 
improving the accuracy of monthly energy estimates. The significance of the 
study is that atmospheric stability and air-density are accounted in the power 
predictions of the wind turbine.  Artificial Neural Networks (ANN) machine 
learning approach is used to generate multi-parameter input models to estimate 
the power produced by the wind turbine. The ANN is a Feed Forward Back 
Propagation (FFBP).  The power- and wind-data is obtained from a 2.5 MW 
wind turbine that has a Meteorological tower located 900m Southwest of the 
wind turbine in Kirkwood, Iowa, USA. The study investigates the role of 
atmospheric boundary-layer metrics – Wind Speed, Density (a measure of 
stratification), Richardson Number, turbulence intensity, and wind shear as 
input parameters into the ANN model. The study investigates the influence of 
FFBP ANN hyper-parameters on the power prediction accuracy. Comparison of 
the FFBP ANN model to other power curve correction techniques demonstrated 
an improvement in the Mean Absolute Error (MAE) of 40% when compared to 
the density correction (the next closest). The five-parameter 4-layer FFBP  
ANN has an average energy production error of 0.4% for the nine months while 
the IEC is -3.7% and the air density correction is -1.9%.   Finally, the study 
determines the performance of the FFBP ANN model for different atmospheric 
stability regimes (Unstable, Stable, Strongly Stable, Strongly Unstable and 
Neutral) classified using two criterions - Richardson number and Turbulence 
intensity.   The largest MAE occurs during the strongly stable regime of the 
atmospheric boundary layer for both criteria. 

 

1. Introduction 
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With exploding populations in the world and the 
need to meet their ever-increasing energy demands, it is 
becoming critical for alternative energy sources to be a 
reliable form of energy. Wind energy is an efficient 
resource, and the United States wind supply is abundant, as 
per the recent 2017 Department of Energy report [1]. In the 
United States, wind has the largest renewable generation 
capacity of all renewable energies. However, for wind 
power to compete with the conventional generation 
sources, and to be a sustainable energy resource, it is 
crucial for it to be cost-effective. Wind energy becomes 
more valuable with increased accuracy of prediction of 
wind-power because more if it can be transmitted to the 
grid. The uncertainty in the prediction of power due to the 
stochastic nature of the wind is the ongoing challenge for 
the wind power generation industry.  Within a wind farm, 
the output power of an individual wind turbine varies with 
the wind speed, air density, wind turbulence. The inflow 
wind conditions for each wind turbine is different, so each 
wind turbine has a unique power performance curve.   

The International Standard IEC 61400-12-1 has 
provided a standard methodology for measuring the power 
performance of a specific wind turbine [2]. At the test site, 
the hub height wind-speed and the power generated by the 
wind turbine are measured for a long duration of time to 
generate a significant database under varying atmospheric 
conditions. The power measurements implicitly include the 
turbulence levels at that site. A method of bins is applied to 
determine the power curve for that wind turbine, and this is 
referred to as site-specific power curve for that specific 
wind turbine. Figure 1 shows an example of a site-specific 
power curve developed. The data were collected every 10 
minutes as averaged wind speed measurements. The figure 
shows the significant variations of power that can occur at 
each wind speed. Variations in air density and atmospheric 
stability are leading causes for the significant variations in 
power at a given wind speed [3–5].   Therefore, there has 
been a focus to improve site-specific power curve 
predictions. 

 

 

 

 

 

 

 

 

Figure 1. Site specific Power Curve 

Recently, deep learning data-analytic methods, 

such as machine learning are becoming popular to improve 
power curves. Machine learning allows for a power 
prediction model to have multiple inputs (an even greater 
number than described above by power curve corrections).  
Therefore, the power prediction can incorporate stability 
effects of the atmospheric boundary layer. Clifton et al. [6] 
used stochastic simulations, which generated realistic wind 
speed and wind turbine power data, to develop a regression 
tree model of power prediction using turbulence intensity 
at hub height and vertical wind shear. Their results showed 
a three-fold improvement, with a reduction in prediction 
scatter from 4% to 1.3%, in power estimation with the 
machine-learned model.  Similarly, Pelletier et al. [7] used 
a six parameter artificial neural network to predict power 
production to identify faulty wind turbines.  The results 
showed a higher reduction in MAE compared to the other 
power curve models.  In some studies, machine learning 
techniques have been used with multiple variables such as 
wind-speed, wind-direction, and hub-height temperature 
[12–15]. 

 The literature shows that including additional 
inputs into power curve models can improve accuracy.  
Models that use corrections do not fully capture the 
complex nonlinearities that occur due to the atmospheric 
boundary layer. Machine learning power curves on the 
other hand; have been based on data available rather than 
utilizing metrics that quantify the atmospheric stability. 
This study is unique because it builds upon the vast studies 
that have shown that variations in atmospheric stability 
cause errors in the wind turbine power curves [3,11–15]. 
Therefore, the machine learning algorithms used in the 
study are built using metrics that quantify atmospheric 
stability.  

 Atmospheric Boundary Layer stratification is 
generally categorized into three regimes: stable-, neutral-, 
and unstable- stratification [16].  The stable regime occurs, 
generally, during night-time conditions where surface cools 
the air. Therefore, there is a large amount of wind shear 
with very little turbulence [17,18]. The unstable 
stratification conditions occur, generally, during the day-
time when the surface heats the surrounding air close to the 
ground.  This causes vertical fluctuations and creates large 
amounts of mixing in the atmosphere. Therefore, the 
unstable regime has uniform wind speeds with significant 
turbulent fluctuations [19–21]. Neutral conditions occur 
when there are negligible buoyancy effects [22,23].  The 
different stabilities create a wide range of performance in 
wind turbines [3–5,24–27]. Nielson and Bhaganagar 
[28,29] showed that the day to day variations of stability 
can lead to a wide range of energy production forecasts. 
Their study showed that one sigma standard deviation of 
surface heat flux resulted in a difference in energy 
production of 10%. The current study combines this 
knowledge of atmospheric stability to build machine 
learning algorithms to improve site-specific power 
prediction. 

   Hence, in the current study, the focus is on 
improving the input variables to build the power curve. The 
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study includes variations in the atmosphere as inputs into 
an Artificial Neural Network (ANN), which is a type of 
machine learning. An ANN is a tool that mimics the 
neurons in a brain. The study uses different methods to 
quantify the atmospheric stability (also known as 
atmospheric metrics) determined from previous research to 
characterize the atmospheric stability as inputs into the 
ANN.     

The current study uses Feed Forward Back 
Propagation (FFBP) ANN models to predict the power 
output of a single wind turbine. The benefit of this 
approach is improved accuracy prediction of power 
production by including atmospheric effects.   
The objectives of the study are to 

1. To determine the effectiveness of different 
atmospheric inputs, including wind speed, air 
density, wind shear, turbulence intensity, and 
Richardson Number, used as inputs in the FFBP 
ANN models, to investigate the optimal number 
of parameters used as inputs, and to investigate 
the influence of the FFBP ANN Hyper-
Parameters. 

2. To compare the error from the FFBP ANN model 
to other power curve adjustments to quantify the 
performance and determine how this affects the 
energy production estimates. 

3. To determine the performance of the FFBP ANN 
model in different atmospheric stability regimes. 

 

2. Methodology 

The details of the machine learning algorithms  
are discussed in section 2.1. Section 2.2 gives the details of 
the wind turbine data set used for the analysis. 

2.1. Machine Learning Algorithms 

In this paper, the aim is to provide comprehensive 
study on the performance of different models for predicting 
the power of a wind turbine. The study compares the 
performance of two Artificial Neural Network (ANN) 
models - Feed Forward Back Propagation (FFBP) neural 
networks and Radial Basis Function (RBF) neural 
networks, Random Forest Regression (RF), Support Vector 
Regression (SVR) and, Gaussian Process Regression 
(GPR) models. 

 
Feed Forward Back Propagation (FFBP) neural 
networks 

Feed forward back propagation neural networks 
also known as multi-layer feed forward neural networks or 
multi-layer perceptron (MLP) or just back propagation 
neural networks are well known type of ANNs used for 
wide variety of tasks like prediction, function 
approximation or pattern classification [30,31]. The MLP 
model consists of one input layer, at least one hidden layer 
and one output layer [32,33]. The model correlates inputs 

(i.e., wind speed and air density) to the output (wind 
turbine power). It uses a set of connecting links (neurons or 
hidden layers) that each has a specific weight.  The inputs 
pass through the neurons, or hidden layers, and are 
multiplied by the weights.  Therefore, each neuron has a 
function � = ∑ ������  where �  is the output, ��  is the �	
 
input, and ��  is the �	
  weight.  The goal is to determine 
the weights to minimize the error at the output.  One of the 
main advantages of neural networks is that they can “learn” 
from data to determine the weights.  The learning occurs 
through an optimization process, where the weights of the 
model hidden layers are updated based on available 
training patterns [34] and compared with data that has 
known outputs. There are many numerical optimization 
techniques used to determine the weights of the neurons. 
This study uses Keras library with Tensorflow, which is 
open source and free of cost, backend with the Adam 
optimization algorithm for implementing the MLP model 
[35], referenced as FFBP ANN. Adam optimization is 
selected because it is known to work well in practice 
compared to other adaptive learning algorithms with fairly 
robust nature to the choice of hyper parameters [36–38].   

Adaptive Moment Estimation, popularly known as 
the Adam optimization algorithm is an efficient stochastic 
optimization method that requires only first order gradients 
with a small memory requirement [39]. This method 
combines the advantages of the AdaGrad  [40] and 
RMSProp [41] methods. The algorithm updates the 
estimates of the first and second moments of the gradients 
which are the exponential moving averages of gradient 
(�	) and squared gradient (�	). The moving averages are 
calculated as �	 =	���	�� + (1 − ��)�	  and �	 =	���	�� + (1 − ��)�	�	with �	 	 being the gradient of the 
objective function with respect to the parameter � at time 
step �  .The hyper parameters ��, �� 	 ∈ [0,1)	 control the 
exponential decay rates of the moving averages. The 
moving averages are initialized using a vector of 0’s which 
leads to a biased moment estimates during the initial time 
steps. To counteract the bias, the moments are computed as 
�	� = �	/(1 − ��	) and �	! = "	/(1 − ��	). The parameters 
(�)  are updated using the rule, �	#� = �	 + $/
%(�	!+∈)�	 	� with $ and & being the learning rate and step 
size respectively [6] . Although the algorithm works well 
with the default hyper parameters, Goodfellow et al. [42] 
suggests that the learning rate might need to be changed 
sometimes.  

Instead of applying the optimization algorithm for 
the whole data, the training data is split into mini-batches. 
Training over all the mini-batches once is called an epoch 
[43]. This study uses design of experiments [44] to 
optimize the batch size, number of epochs and the learning 
rate of the Adam optimization algorithm. A full factorial 
design is generated with 100,200,500,800 and 1000 as five 
levels for batch size; 10,20,50,100 and150 as five levels for 
number of epochs and 0.001, 0.05 and 0.1 as three levels 
for learning rate. For different network architectures, the 
study used the trial and error method to determine the 
values of the parameters.   
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The neural network architecture plays a major role 
as different network structures can result in different 
performances of the model [45]. The problem of finding 
the best network is considered as extremely difficult [46]. 
The two main aspects of the ANN architecture are to 
determine the 1) number of hidden layers and 2) number of 
neurons at each layer [47]. In addition to these, the type of 
activation function used in each layer also plays a critical 
role on the performance of the model [48]. The activation 
function is used to convert the activation level of neurons 
into the output signal [49]. Some of the most commonly 
used activation functions are: Sigmoid, Hyperbolic 
Tangent and Rectified Linear Units (ReLU). 

The study uses the following parameters based on 
the network architecture: 

1) For single hidden layer model: number of epochs 
= 1000, batch size = 150 and learning rate = 0.1, 
activation function of hidden layer = ReLU 

2) For the models with more than one hidden layer: 
number of epochs = 100, batch size = 10 and 
learning rate = 0.001, activation function for all 
layers except last hidden layer = Sigmoid, last 
hidden layer activation function = ReLU 

3) For all the model the linear activation function is 
used for the output layer 

All the models are retrained 10 times and the best model is 
selected. 

 
Radial Basis Function (RBF) neural networks 

RBF neural networks another popular type of 
ANNs are known to be the universal approximators [50]. 
They have a compact topology compared to other neural 
networks [51,52].  It involves three layers – one input, one 
hidden and one output layer [20]. The input layer connects 
the source neurons to the only hidden layer of the network. 
The hidden layer applies the nonlinear transformation from 
the input space to hidden space [53] . Using the Gaussian 
kernel as the radial basis function, the output can be 
expressed as � = 	∑ '����� = 	∑ ��exp	(−‖, − ��‖�/��-�2/��)  where ,  is the input, ��  and /�  are the center and 
width of	'� [54]. The two hyper parameters that are to be 
optimized for this network are the number of hidden radial 
basis functions which the number of centers and the width 
of the Gaussian kernel (/). The number of hidden radial 
basis functions relate to the accuracy of the network 
approximation [55,56]. After many trial and error tests, the 
optimal value of number of radial basis functions = 250 
and / = 0.1 are found. 

 
Random Forest Regression 

Random Forest regression proposed by [57] is an 
ensemble learning technique. It combines the performance 
of multiple decision trees for predicting the output variable 
[58,59]. It is based on the concept of bagging method in 
which the trees are constructed using a subset of random 
sample drawn with replacement from training data [60,61]. 
The random forest regression algorithm consists of 
following steps as explained by [62].  

1. Draw a number of trees bootstrap samples from 
original data 

2. For each bootstrap sample, grow unpruned 
regression tree for which at each node randomly 
sample the number of predictors and choose the 
best split among those variables 

3. Predict the output for test data by averaging the 
predictions from all the trees 
The study used the random forest algorithm by 

scikit-learn [63]. The version of scikit-learn is 0.21.1.  
Random forests require at least two hyper parameters to 
set, the number of trees (nestimators) and the maximum 
number of features (maxfeatures) [64]. The value of nestimators 
is fixed to 110 using the grid search ranging from 10 to 200 
with an increment of 10. The default maxfeatures value is 
used as for the regression problems the empirical good 
default value is known to be number of features (nfeatures) 
[65].  

 
Support Vector Machines for Regression 

Support vector machines based on structural risk 
minimization principle proposed by [66] are learning 
machines for recognizing the subtle patterns in complex 
datasets [67,68]. Initially developed for solving the 
classification problems, they were extended to solve the 
regression problems for promising empirical performance 
[69]. The idea of the support vector regression is to use the 
kernel functions to map the initial data into the higher 
dimensional space such that the nonlinear patterns can be 
converted into a linear problem [70] . Support Vector 
Regression (SVR) performance is highly dependent on the 
selection of kernel functions [71].  Linear, Polynomial, 
Sigmoid and Radial Basis Function kernels are some of the 
most commonly used kernels [72]. For an efficient SVR 
model, the hyper parameters must be set carefully 
otherwise can be lead to over-fitting or under-fitting [73]. 
The 1-insensitive zone and regularization parameter 2 are 
the two main hyper parameters of the model [74,75].  The 
regularization parameter 2 penalizes any deviation than the 
1. For higher the values of 2, the penalty becomes more 
important and the SVR fits the data, whereas for smaller 
values of  2, the penalty gets negligible and the SVR gets 
flat. In the same way, the higher the value of 1 increases 
the margin and the SVR tends to become flat but with 
lower 1 SVR tries to fit the data [76]. The study used SVR 
algorithm by scikit-learn. The optimal 2 = 3000  and 
1 = 0.01 are found using the grid search.  

 
Gaussian Process Regression (GPR) 

GPR can be viewed as an extension of standard 
regression models. It is one of the most popular non-
parametric probabilistic models for estimating black-box 
functions [77]. ANNs with infinite hidden neurons are 
considered to converge to a Gaussian Process [78]. 
Gaussian Process is defined as a collection of random 
variables, any finite number of which have a joint Gaussian 
distribution. It is completely specified by its mean and 
covariance function that determine the smoothness and 
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variability of the function [79]. The GPR model is 
constructed as �� = 4(,�) + 1�  for � = 1,2, . . , 5 . 1  is 
assumed to be the additive independent identically 
distributed Gaussian noise with variance /�� .  The 
predictive distribution of test data is obtained by 
conditioning on the training data and test inputs [80]. This 
study uses a Gaussian Process for Machine Learning 
(GPML) library in MATLAB for fitting the GPR model 
[81]. It uses the squared exponential kernel for computing 
the covariance. It uses maximum likelihood approach from 
GPML library to optimize all the hyper parameters 
associated with the covariance kernel and the Gaussian 
noise. 

 
The following describes the methodology for 

selecting a training dataset and testing any of the ANN 
models’ performance.  A random sample is taken from the 
complete dataset for training. The sample size was 
determined using a statistical confidence interval of 99% 
and a margin of error of 2% as 

6 = 7�8(1 − 8)/9�

1 + 9�8(1 − 8)
9�:

 

Eq. 4 

where z is the z-score based on a 99% interval, e is the 
margin of error, N is the total sample size of the data set, 
and p is set to 50% because it is the most conservative 
case. The sample size was approximately 15% of the 
complete dataset. The same random sample is used to train 
each model. Once the optimization is complete, the trained 
model can be used to predict power for the remaining data. 
The power predictions are compared to the actual power 
output to evaluate any ANN model performance.  

The study uses the following methods to evaluate 
all the ANN functions.  Mean Absolute Error (MAE), 
calculated as 

;<= = ∑ |?@A	 − ?BC	|��-�
5  Eq. 5 

where ?@A	is the actual power, ?BC	 is the estimated power 
using a model, and 5 is the number of samples used (the 
complete dataset). 

The normalized MAE is given by Eq.6. 

;<=� = ∑ |?@A	/?D@	BE − ?BC	/?D@	BE|��-�
5  

Eq. 6 

where ?D@	BE is the rated power of the wind turbine. 
 
The study uses the power prediction data to 

compute the energy production estimates. The energy 
production is the integration of power for a given time. 
From the power, Energy Production is 

=? = F?(5) ∗ �(5)
�

�-�
 Eq. 7 

where 5 is the number of samples (over one hour), ?(5) is 
the power determined from any ANN model or the actual 
power for a given sample, and �(5) is the measured time of 
the averaged sample in hours (1/6 for the 10-minute data). 
Therefore, the energy production is determined for each 
hour for both the ANN models’ prediction and the actual 
energy produced. The study compares the energy 
production estimates of the ANN models with other 
correction models for each of the eight months of wind 
turbine data collected. The error is determined as 

=?BDDHD =
∑ =?@A	 − =?BC	=?@A	

��-�
5  

Eq. 8 

where 5 is the number of samples in a month, =?@A	  is the 
actual energy production, and =?BC	 is the estimated energy 
production from the model. 

2.2. Kirkwood Iowa Dataset 

The dataset comes from the Kirkwood/University 
of Iowa Wind Data Project [82].  The data is from January 
to August of 2015. The project includes one Clipper 2.5 
MW wind turbine with Supervisory control and data 
acquisition (SCADA) from the wind turbine and a 
meteorological tower 900 �  SW of the wind turbine as 
shown in Figure 2a.  The SCADA data includes the power 
production of the wind turbine, air density, the hub height 
wind speed, and the standard deviation of the hub height 
wind speed. The meteorological tower contains 
measurements described in Table 1. These include wind 
speed, temperature, barometric pressure, and air 
temperature at multiple heights. Figure 2b shows the 
distribution of the Kirkwood Iowa Data wind speeds 
measured at hub height.  63% of the data occurs between 5 
and 10 �/I.  Only 13% occurs above 10 �/I and 24% 
occurs below 5 �/I. 

The goal of implementing the ANN models is to 
incorporate atmospheric stability into the power 
predictions.  Therefore, derived variables that quantify 
atmospheric stability are used as inputs. The study uses 
turbulence intensity, Richardson Number, and wind shear 
as variables that describe atmospheric stability and 
described each below.  Turbulence intensity, shown in 
Eq.8, describes the amount of turbulence in the atmosphere 
and relates directly to the atmospheric regime [4,14]. The 
turbulence intensity is determined from the standard 
deviation of the horizontal wind speed as a ratio of the total 
horizontal wind speed.    The meteorological data are used 
to determine the Richardson Number calculated in Eq. 9.  
The Richardson Number is a dimensionless ratio of the 
buoyancy and shear in a flow [83].  This ratio aids in 
classifying a flow as buoyancy dominated or shear 
dominated flow corresponding to a specific stability regime 
[12].   For the Richardson Number, the velocity and 
temperature measurements at 6.6 � and 106.6 � are used. 
Finally,  wind shear can also be used to determine stability 
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[6,12].  The met tower data determines the wind-shear 
exponent J , known as the wind shear, by fitting the 
velocity profile of all six wind speeds to Eq. 10.  Table 4 
defines how the different parameters calculated in Eq. 8-10 
are used to determine atmospheric stability.   

K = �7L Eq.8 

M�C =
�
�NOOO

P�N/P7
(PKQ/P7)� 

Eq.9 

R� = /S
K  Eq.10 

 
 
 

(a) 

(b) 

Figure 2. (a) Wind Turbine and Meteorological Tower 
layout (b) histogram of wind speeds for the Kirkwood Iowa 
data. 

 Table 1 Meteorological Tower sensor description. 

Parameter Device Height (m) 

Wind Speed NRG Cup 

Anemometers 

6.6, 10.15, 33.5, 55.8, 

82.2, 106.7 

Wind Direction NRG Cup Vane 6.6, 10.15, 33.5, 55.8, 

82.2, 106.7 

Barometric Pressure Not Available 6.6, 106.7 

Air Temperature Not Available 6.6, 106.7 

3. Results 

3.1. Role of input parameters in model performance 

The next step was to focus on determining the 
number of input parameters to be included in the FFBP 
ANN model to obtain the best performing power curves. 
Table 2 describes the FFBP ANN models used for the 
comparisons.  The study investigated two-parameter, three-
parameter, and five-parameter models (the number of 
inputs) as shown in Table 2. 

Table 2. Description of the FFBP ANN Models used for comparison. 

Number of 
Parameters 

Parameters ID 

2 I. Wind Speed 

II. Density 

WD 

2 I. Wind Speed 

II. Turbulence Intensity 

WTi 

2 I. Wind Speed 

II. Richardson Number 

WRi 

2 I. Wind Speed 

II. J 

WA 

3 I. Wind Speed 

II. Density 

III. Turbulence Intensity 

WDTi 

3 I. Wind Speed 

II. Density 

III. Richardson Number 

WDRi 

3 I. Wind Speed 

II. Density 

III. J 

WDA 

5 I. Wind Speed 

II. Density 

III. Turbulence Intensity 

IV. Richardson Number 

V. J 

WDTiRiA 

 
The IEC standard is used as the baseline of 

performance. The study investigates the atmospheric inputs 
by using a single layer, 10 neuron, FFBP ANN. Figure 3a 
shows the MAE for the two-parameter cases WD, WTi, 
WRi and WA as well as the MAE for the IEC. The figure 
shows the MAE is less for wind speeds below 3 �/I (the 
cut in speed), it increases to a peak value between 8-10 
�/I, and then it decreases to a minimum at 15 �/I (rated 
wind speed). The peak MAE for the IEC, WD, WTi, WRi, 
and WA is 141.7, 85.6, 130.0, 133.8, and 138.0 TU , 
respectively. The WA case had a larger MAE at 2 �/I and 
15 �/I than the other models, which was 55.1 and 75.0 , 
respectively.  No other case showed similar behavior. The 
total error (in addition to the peak MAE) can be quantified 
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with a weighted average MAE, where the weights are 
determined based on the number of samples in each bin as 
shown in Figure 2b. All two-parameter FFBP ANNs 
showed an improvement over the IEC standard, which has 
an average MAE of 78.5 TU . The two-parameter FFBP 
ANNs WTi, WRi, WA had a total MAE of 67.3, 72.2, and 
74.9 TU respectively. The improvement, compared to the 
IEC, was 13.8%, 8.1%, and 4.6% respectively. The two-
parameter FFBP ANN WD showed the most significant 
reduction in MAE with an average MAE of 48.0 TU, or 
39% improved over the IEC.  The two-parameter FFBP 
ANN WD reduced the MAE by 50% at a wind speed of 9 
�/I when compared to the IEC.  The reduction below 5 
�/I and above 12 �/I is not as significant and it is 20% 
and 6% respectively.  The results indicate that the WD 
FFBP ANN case has the highest reduction in MAE 
compared to all other two-parameter FFBP ANNs.  

Figure 3b compares the WD FFBP ANN to the 
three-parameter and five-parameter FFBP ANNs. The peak 
MAE for the WDTi, WDRi, WDA were 69.6, 81.3 and 
83.4 TU respectively.  The WDRi case has a larger MAE 
below 3 �/I  and between 12-14 �/I .  The total MAE 
(determined by a weighted average based on the number of 
samples in each bin as shown in Figure 2b for cases WDTi, 
WDRi, WDA were 35.3, 46.4, and 47.9 TU respectively. 
The three-parameter FFBP ANN  WDTi showed the most 
significant improvement over the two-parameter FFBP 
ANN WD.  The WDTi case reduced the peak MAE by 
50% when compared to the IEC standard. The WDTi 
reduced the average MAE by 55% when compared to the 
IEC standard. The three-parameter FFBP ANN WDTi also 
reduced the MAE below 3 �/I and above 12 �/I by 38% 
and 15% respectively when compared to the IEC.  

Also shown in Figure 3b is the five-parameter 
case WDTiRiA.  WDTiRiA had a peak MAE of 64.1 TU 
at 9.8 �/I. The MAE at 14 �/I was 18.9 TU, compared 
to 12.2 TU  of the WDTi case.  The average MAE 
(determined by a weighted average based on the number of 
samples in each bin as shown in Figure 2b) for the five-
parameter FFBP ANN was 34.3 TU , a reduction of 2% 
from the WDTi case. Overall, the WDTi had the lowest 
MAE of all the three-parameter FFBP ANNs. The five-
parameter FFBP ANN WDTiRiA showed the lowest 
average MAE with a 2.75% improvement over the WDTi 
case. The results show how including additional 
atmospheric parameters as inputs can improve FFBP ANN. 

(a) 
 

(b) 
 
Figure 3. Mean absolute error for the (a) IEC, two-
parameter: Wind Speed and Density (WD), Wind Speed 
and Turbulence Intensity (WTi), Wind Speed and 
Richardson Number (WRi), Wind Speed and J (WA); and 
(b) two-parameter: Wind Speed and Density (WD);  three-
parameter: Wind Speed, Density and Turbulence Intensity 
(WDTi), Wind Speed, Density and Richardson Number 
(WDRi), Wind Speed, Density and J  (WDA); Five 
parameter (WDTiRiA). 
 
 The  influence of the FFBP ANN hyper-
parameters were studied to optimize the FFBP ANN model 
using a five-parameter input (WDTiRiA) because it 
performed the best. Figure 4 a shows the influence of the 
number neurons in a single layer FFBP ANN. The major 
differences occur at the peak MAE, and at wind speeds 
below 5 m/s. The peak MAE is 78.6, 69.4, 68.4, 67.8, and 
66.2 kW for the 11, 15, 16, 20, and 30 Neuron models 
respectively. The peak MAE begins to get larger after 50 
neurons (not shown in the figure). The additional neurons 
reduce the peak MAE, but not the average MAE.  The 
average MAE is 36.2, 37.3, 34.9, 35.4, and 35.3 kW 
respectively. The average MAE reaches a minimum at 16 
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neurons.  The average MAE increases with additional 
neurons beyond 60 because the MAE increase below 5 m/s. 
The increase in MAE comes from overfitting the data at 
lower wind speeds.    
 Next, the study investigates the influence of the 
number of hidden layers on the MAE.  The number of 
neurons in each layer was optimized, as described in the 
single layer example shown in the paragraph above. The 
largest differences occur for wind speeds above 10 m/s. 
The peak MAE for each layer is 68.4, 64.2, 66.2, 64.2, and 
64.8 kW  for the 1 layer (16 neurons), 2 layer (50, 20 
neurons), 3 (100, 50, 20 neurons) layer, 4 layer 
(100,50,20,10 neurons), and 5 layer FFBP ANN 
(200,100,50,30,11) respectively.  The average MAE is the 
34.8, 32.8, 31.5, 30.5, and 32.4 kW respectively.  Beyond 4 
layers, additional layers tend to over fit the data between 
12 and 15 m/s. The optimal FFBP ANN model for the five-
parameter data is the 4 layer FFBP ANN with 100, 50, 20, 
10 neurons in first, second, third and fourth hidden layers 
respectively. The model consists of 5 input neurons in the 
input layer and one neuron in the output layer. The network 
topology for the 4 layer model is 5-100-50-20-10-1.  
 

(a) 
 

(b) 
 

Figure 4. Mean absolute error for the (a) Single FFBP 
ANN with layer 11 Neurons, 15 Neurons, 16, Neurons, 20 
Neurons, and 30 Neurons (b) Optimized FFBP ANN with 1 
layer (16 neurons), 2 layer (50, 20 neurons), 3 (100, 50, 20 
neurons) layer, 4 layer (100,50,20,10 neurons), and 5 layer 
FFBP ANN (200,100,50,30,11). 
 The study compared the 4 Layer FFBP ANN with 
other Machine learning models to quantify the performance 
of predicting the wind turbine power. Figure 5 shows the 
MAE for each 4 layer FFBP ANN, RBFN, RF, SVR, and 
GP.  The peak MAE is 64.3, 77.7, 80.7, 66.1 and 66.2 kW 
respectively.  The average MAE is 30.5, 45.8, 35.8, 38.8, 
and 41.4 kW respectively.  The RBFN and RF models 
perform the best at the lowest wind speeds, but also have 
the highest peak MAE. The GP and SVR models have a 
peak MAE that is only moderately higher than the 4 layer 
FFBP ANN but also have a large MAE above 12 m/s 
where there is significantly less data (as shown in Figure 
2b). The 4 layer FFBP ANN outperforms the other models 
and has a smaller average MAE, which shows the 
robustness of the FFBP ANN model for wind turbine 
power prediction. 
 

 

 
 
Figure 5. Mean absolute error for the 4 Layer FFBP ANN, 
RBFN, RF, SVR, and GP. 
 

Next, in Figure 6, the 4 layer FFBP ANN is 
compared to other improved power curve models used in 
literature: These include equivalent wind speed which uses 
the wind speeds at every height of the meteorological 
tower [11], a multi-power curve model which uses wind 
speed and turbulence intensity filters [4], and the density 
correction method [84].  

Figure 6 shows the MAE of each of the models. 
The peak MAE for the IEC, density correction, turbulence 
intensity filter, equivalent wind speed, and the 4 layer 
FFBP ANN are 141.7, 98.3, 135, 110.0 and 64.3 TU 
respectively. The peak MAE occurs at different wind 
speeds, at 9.2, 8.5, 9.8, 9.2, and 9.2 �/I  respectively. 
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Those that include turbulence intensity shift the peak MAE 
to higher wind speeds.  The average MAE (determined by 
a weighted average based on the number of samples in 
each bin as shown in Figure 2b was 78.5, 58.4, 69, 59.3, 
and 30.5 TU for the IEC, Density correction, Turbulence 
Intensity, Equivalent Wind Speed, and the 4 layer FFBP 
ANN respectively. The 4 layer FFBP ANN showed 
significant improvement over all other models.  The FFBP 
ANN model reduced the peak MAE by 35% when 
compared to the density correction (the next closest model) 
and reduced the total MAE by 48%. The 4 layer FFBP 
ANN reduced the peak MAE by 52% and 42% and the 
total MAE by 65% and 44% for the turbulence filter and 
equivalent wind speed respectively. The results show the 
importance of including both air density and atmospheric 
effects into power prediction and further validates the 
methodology of using FFBP ANNs in wind power 
prediction. 
 
 

 
 
Figure 6. Mean absolute error for the (a) IEC, two-
parameter: Wind Speed 
 

The energy production is calculated by integrating 
the power predictions over time as shown in Eq. 7.  Table 3 
shows the error, as determined by Eq. 8, of the monthly 
energy production estimates (compared to the actual 
energy production) for the IEC model, density correction 
model, and the 4 layer FFBP ANN model. For the IEC 
standard, the highest error is 20% and is recorded for 
August, and the average error over the entire 8 months is 
3.7%. The density correction improves the energy 
predictions with a maximum error of 14.1% in the month 
of August and an average error of 1.9%.   The average 
errors for the IEC and density correction were -3.7% and  -
1.9%, which are near the expected 2-5% in the literature 
[85]. The 4 layer FFBP ANN further enhances the energy 
production estimates by including atmospheric effects 
using turbulence intensity.  The FFBP ANN model showed 
a max error of 1.09% during February and an error of 0% 

in May. The 4 layer FFBP ANN had an average error of 
0.4%.  The 4 layer FFBP ANN model reduced the averaged 
energy production error to  0.4%.   

The FFBP ANN also performed more consistently 
from month to month.  Both the IEC and air density 
correction underpredict from January to March but 
overpredict during the April to August Months.  The month 
to month variation in percent error is much smaller for the 
4 layer FFBP ANN, as it remains at or below 1.09%.  The 
month to month variations might come from the variation 
in atmospheric conditions. For the months Jan-Mar, the 
temperatures are cooler causing a lower average air 
density. Therefore, the actual energy production will be 
higher than the estimated value for the IEC method and the 
error is positive. For the months Apr-Aug the opposite is 
true, and the IEC error is positive. The improved 
predictions show the ability of machine learning to aid in 
future wind energy estimates and for estimating an Annual 
Energy Production (AEP) for future wind turbines and 
further validates the FFBP ANN methodology.  To better 
understand the cause of monthly variations in the errors of 
energy production, an analysis of the atmospheric stability 
is conducted next.  

Table 3. Energy Production Error, compared to actual energy production 
in percent, of different power curve models. 

Month IEC Density 
Correction 

4 Layer 
FFBP 
ANN  

Jan 6.8% 2.4% -0.46% 

Feb 10.3% 5.1% 1.09% 

Mar 4.9% 3.0% 0.67% 

Apr -1.0% 0.2% -0.1% 

May -6.3% -2.1% 0.0% 

Jun -11.7% -4.6% 0.39% 

Jul -12% -5.3% 0.38% 

Aug -20% -14.1% 0.96% 

Total -3.7% -1.9% 0.4% 

 

3.2. Role of atmospheric stability on FFBP ANN model efficacy 

To understand the effect of atmospheric stability 
on the error in the FFBP ANN model, the study  performed 
the following analysis.  The results between the convective 
(negative Richardson Number) and stable (positive 
Richardson Number) atmospheric stability conditions for 
the 4 layer FFBP ANN were compared.  37% of the data 
had a Richardson number above zero. Figure 7 shows the 
results. The convective conditions had a smaller peak 
MAE, which was 61 TUcompared to 75 TU. The MAE 
for the convective conditions was smaller between the 
wind speeds of 7-11 �/I. This might result because the 
convective atmosphere is more mixed.  Therefore, there is 
less of a variation in wind speed and density throughout the 
height of the wind turbine. The MAE during the convective 
conditions is larger for wind speeds above 12 �/I (35 TU 
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compared to 20 TU), which is the near rated wind speed 
for the wind turbine.  Although, the wind speeds above 12 
�/I only account for 5% of the total wind speed samples.  
This might be due to high turbulence causing the wind 
speed to fluctuate above and below the rated wind speed.   

 

 
 

 
Figure 7. Mean Absolute Error for convective atmospheric 
stability (negative Richardson Number) and stable 
atmospheric stability (positive Richardson Number) 
conditions. 
 
 To group data by atmospheric stability conditions, 
the the classifications shown in Table 4 were used. Table 4 
shows the five stability regimes that were obtained using a 
range of Richardson Numbers and turbulence intensity 
values [25,26]. The classifications are used to investigate 
further how the atmospheric stability affects the MAE and 
are Strongly Unstable (SU), Unstable (U), Neutral (N), 
Stable (S), and Strongly Stable (SS) conditions.  

Table 4 Definition of stability regimes for different parameters. 

Stability Name VW [26] XY [25] 

Strongly Unstable SU <-0.2 >0.2 

Unstable U -0.2 to -0.1 0.13 to 0.2 

Netrual N -0.1 to 0.1 0.1 to 0.13 

Stable S 0.1 to 0.25 0.08 to 0.1 

Strongly Stable SS >0.25 <0.08 

 
An analysis is conducted by using one of the two 

criteria, Richardson Number or turbulence intensity, to 
classify the atmospheric stability as shown in Figure 8.  As 
seen in Figure 8a, when using the Richardson Number 
criteria, the strongly stable SS regime shows the largest 
peak MAE of 142 TU at 10.5 �/I. The SS case begins to 
deviate to the peak MAE at 7 �/I. The peak MAEs are 

107, 61.5, 73.0, and 64.2 TU and occur at 10.5 �/I, 11.9 
�/I ,  9.2 �/I , and 10.5 �/I  for the S, U, N, SU 
respectively. The peak MAE is two times larger for SS 
than for N.   

The turbulence intensity criteria is used to group 
the data in Figure 8b.  Using the turbulence intensity 
criteria to define the regimes shows different results.  The 
unstable regime showed the lowest peak MAE.  The SS 
group had the largest MAE of 270 TU at a wind speed of 
10.5 �/I. The other peak MAEs were 151, 78.7, 59.9, 79.3 
TU and occurred at 10.5, 9.8, 9.2, and 12.6 �/I for the S, 
N, U, and SU cases respectively. The N regime showed 
higher MAE for wind speeds between 7 �/I and 12 �/I 
with an increase of 20% compared to the unstable regime.  
The SU regime showed higher MAE for wind speeds 12-15 
�/I that was five times larger than the U regime.  This 
matches the result in Figure 7 for the convective MAE.  
These high wind speeds only represent 5% of the total 
samples as shown in Figure 2b. Both the S and SS regimes 
showed higher MAE for wind speeds between 7 �/I and 
12 �/I with the SS being eight times larger and the stable 
being three times larger than the U regime. It should be 
noted that using turbulence intensity to determine stability 
showed S and SS regimes made up 5% of the data whereas 
the Richardson Number showed 23% of the data in the SS 
and SS regimes. Therefore, the larger error might come 
from the small number of statistical values for training the 
FFBP ANN.  The peak MAE for both S and SS using 
either method is much larger than the other regimes. 
Overall, the state of the atmosphere has a significant effect 
on the performance of the 4 layer FFBP ANN, in 
particular, SS and S conditions produce the largest MAE 
between 7-12 �/I. 

 
 

 (a) 
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(b) 
 
Figure 8. Comparison of MAE for different stability 

regimes using a) Richardson Number, and b) turbulence 
intensity. 
  

4. Discussion 

In summary, the 4 layer FFBP ANN with wind 
speed, air density, turbulence intensity, Richardson 
number, and wind shear was selected to compare with 
other power curve models due to its ability to learn the 
complex relationship between the inputs and the output. 
The 4 layer FFBP ANN showed a reduction in peak MAE 
and average MAE compared to other models that correct 
for atmospheric stability. The FFBP ANN reduced the peak 
and average power curve MAE by 35% when compared to 
the air density correction model, which was the next 
closest. The reduction in MAE from the 4 layer FFBP 
ANN power curve led to a reduction in the error of energy 
production estimates.  The 4 layer FFBP ANN had an 
average energy production error of 0.4% for the nine 
months while the IEC was -3.7% and the air density 
correction was -1.9%.   Similarly, Manobel et al. [86] used 
Gaussian Processes to reduce the AEP of a wind turbine 
from 1.98% to 0.71% although the current study focuses on 
incorporating atmospheric stability as inputs into the 4 
layer FFBP ANN. The study showed how atmospheric 
stability parameters can be inputs into FFBP ANNs to 
improve wind power forecasting.  

Ata [87] described some limitations of FFBP 
ANNs which include over training, extrapolation errors, 
and network optimization. This work did not inspect 
potential solutions for over-fitting, such as inserting 
dropout rates in the analysis, since it would go beyond the 
scope of our research. The hyper-parameters for the 
artificial neural network were optimized to mitigate these 
limitations.  The study used a full factorial design to test 
the design space of the hyper parameters.  The study found 
that for a single layer FFBP ANN, 16 neurons produced the 
optimal MAE. Adding additional layers creates over 

training (or over fitting) especially at the high and the low 
wind speeds.  This finding suggests that the FFBP ANN 
could further reduce the power prediction error by using 
hybrid combinations of machine learning models based on 
wind speed and stability [88]. Additionally, the study 
investigated the performance based on the number of 
hidden layers.  The study found the 4 layer FFBP ANN had 
the lowest average MAE.  Again, adding more layers 
creates over fitting for high wind speeds (above 12 m/s) 
where there are a smaller number of samples.     

The study investigated the robustness of the FFBP 
ANN by comparing other machine learning techniques 
such as Radial based function (RBF), Random Forest 
Regression (RF), Support Vector Regression (SVR) and 
Gaussian Process Regression (GP).  The 4 layer FFBP 
ANN had a smaller average MAE than the other tested 
models. Specifically, the 4-layer FFBP ANN reduced the 
MAE above 12 m/s where there are a smaller number of 
samples to draw into the training set.  Li and Shi [45] 
performed a similar comparison for wind speed estimation 
and showed that the best performing algorithm depended 
on the makeup of the data set tested.  Implementing this 
methodology on more data sets will help to improve the 
robustness of the model. Additionally, the study 
investigated the upper and lower 95% confidence bounds 
of MAE for the 4 layer network, shown in Table 5 of 
Appendix A.  The Average MAE for the 4 layer network 
was 30.45 kW.  The upper and lower bounds were 30.81 
and 30.09 kW respectively.  The small deviation in the 
upper and lower bounds also shows the robustness of the 4 
layer model. 

The current study used FFBP ANNs to develop a five-
parameter power curve using wind speed, density, and 
turbulence intensity, Richardson Number, and Wind shear 
(measurements of atmospheric stability). The novelty of 
the approach was to select specific atmospheric inputs 
shown to affect wind turbines from previous literature.  
The novelty led to an improved understanding on the 
atmospheric effects on wind turbines.  Specifically, 
turbulence intensity did not have a substantial impact as an 
input until after wind density was also included meaning:  

• Density should be included as the second 
parameter in power prediction models 

• Not incorporating density in atmospheric studies 
could hide the true atmospheric effects 

• Other atmospheric studies might benefit by 
implementing a density correction before 
determining atmospheric effects on wind power 
curves  

The easiest implementation of the above methodology 
would be for manufacturers to develop the FFBP ANNs 
and give the resulting model to operators to use as a 
“black-box”. The ANN model could replace power curves 
that manufacturers already develop.  Once the model is 
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created, there is little computational power required (the 
current results were performed <1s on a single processor).   
Since the ANNs were built using open source software, the 
only additional costs would be for additional sensors used 
to determine the Richardson number.  Although, the study 
showed that the three-parameter ANN (not including 
Richardson number as an input), using wind speed, density, 
and turbulence intensity, also showed improved 
performance.  These three parameters are already used 
when manufactures follow the IEC standard, and therefore, 
using a three-parameter FFBP ANN would not increase the 
cost to above the status quo. The above methodology is 
computational inexpensive, can easily replace current 
power curves (already have the measurements), was 
developed with open-source technologies, and can also be 
performed with simple toolkits (I.E. Matlab ANN Toolkit) 
which make it a novel, practical, and cost effective solution 
to improve accuracy. 

The 4-layer FFBP ANN model improved power 
predictions by 48% (total MAE) over the wind density 
correction and 59% above the IEC standard used in 
industry.  The three-parameter FFBP ANN directly reduced 
the energy production estimate’s errors. The reduced power 
prediction errors reduced the energy estimate errors from 
3.7% to 0.4%.  These results show improvements over 
other parametric and not parametric models that an energy 
production error of 0.6% to 2.11% [86]. Reducing energy 
estimates has potential cost savings by lowering 
inefficiencies, curtailment, shortfalls, and load shedding.  
Lew et al. [89] described the economic value of improving 
wind power predictions.  Their study showed that with a 
10% improvement in wind power predictions would, 
assuming 14% wind energy penetration, would incur a 
savings of $140M. As penetration increases, these savings 
become even more significant.   

The performance of the FFBP ANN was dependent on 
the stability state of the atmosphere.  When the Richardson 
Number criteria were used for classification of atmospheric 
stability, the strongly stable data showed the highest peak 
MAE of 143 TU  and the stable conditions showed the 
second highest peak MAE of 107 TU .  The unstable 
conditions showed a peak of 72.0 TU , but the peak 
occurred at a higher wind speed of 11.9 �/I. This wind 
speed was higher than the peak MAE for the other 
categories, which fell between 9.2-10.5 �/I . When 
turbulence intensity was used as the classification criteria, 
the strongly stable conditions also produced the highest 
MAE, but it was 271 TU.  The stable conditions had the 
second highest MAE of 151 TU . The strongly unstable 
MAE had a peak of 79.3 TU that occurred at 12.6 �/I, 
which is a higher wind speed than the other peak MAEs. 
The results suggest that the FFBP ANN performance is 
dependent on the atmospheric stability regime, although 
some of this error might be from the smaller statistical 
number of occurrences of certain stability regimes.  
Therefore, the three-parameter FFBP ANN would not be 
trained with as many samples of these cases.     

5. Conclusions 

The study successfully implemented a 4 layer 
Feed Forward Back Propagation (FFBP) Artificial Neural 
Networks (ANN) to develop an improved power curve for 
site-specific power curves and energy predictions.  The 
study compared a variety of different inputs for the FFBP 
ANN power curve.  The five-parameter FFBP ANN (with 
wind speed, air density, turbulence intensity, Richardson 
Number, and wind shear) showed the lowest MAE. The 
FFBP ANN improved the performance of the power curve 
over other methods that use atmospheric stability or density 
to correct the power curve.  The FFBP ANN reduced the 
total Mean Absolute Error (MAE) by 48% over the wind 
density correction used and by 59% compared to the IEC 
method.  Using the FFBP ANN also reduced the error in 
estimated energy production to 0.4% from to 2-4% from 
the IEC and density correction.  

The 4 layer FFBP ANN also reduced the MAE 
over other machine learning algorithms tested, specifically 
Radial based function (RBF), Random Forest Regression 
(RF), Support Vector Regression (SVR) and Gaussian 
Process Regression (GP).  This work successfully 
employed the FFBP NN to forecast a time series.  In future 
work, it would be interesting to investigate the accuracy 
between other time-series efficient networks, such as the 
FFBP NN versus Recurrent Neural Network alternatives 
such as  the long-short term memory (LSTM) and the GRU 
architectures. The 4 layer FFBP ANN had a smaller 
average MAE compared to the other methods tested, and 
also reduced the MAE above 12 m/s where there was less 
data to draw into the training set. The 4 layer model also 
limited over fitting compared to the 5 layer model.  

The 4 layer FFBP ANN performance was 
dependent on atmospheric stability.  At low wind speeds of 
less than 7 �/I  there is not a significant difference in 
MAE between the different atmospheric stability regimes. 
The MAE was lower in unstable conditions for wind 
speeds between 7 -11 �/I  using either the Richardson 
Number or turbulence intensity criterion. The stable and 
strongly stable regimes had a large MAE between 7-11 
�/I for both the criterion. The strongly unstable regime, 
when using the turbulence intensity criteria, had a higher 
MAE at high wind-speeds above 11 �/I. When comparing 
FFBP ANN performance by separating into five stability 
regimes, strongly stable conditions had the largest peak 
MAE for both criteria, but it also has the smallest statistical 
samples to perform the analysis and train the FFBP ANN.   
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Appendix A 

Table 5. Upper and Lower bounds for the 4 Layer MAE.
4 Layer ANN 

Wind 
Speed 
(m/s) 

MAE 
(kW) 

UB (kW) LB (kW) 

2.3 15.79 15.90 15.69 

3.0 12.04 12.06 12.02 

3.7 13.53 13.55 13.51 

4.4 16.90 16.92 16.87 

5.1 18.76 18.78 18.74 

5.8 21.10 21.12 21.08 

6.4 26.62 26.64 26.59 

7.1 35.33 35.37 35.30 

7.8 46.94 46.98 46.89 

8.5 53.66 53.72 53.60 

9.2 64.28 64.37 64.19 

9.9 62.37 62.52 62.22 

10.6 60.65 60.83 60.47 

11.2 45.02 45.16 44.87 

11.9 31.72 32.16 31.27 

12.6 25.92 26.60 25.24 

13.3 18.63 19.43 17.84 

14.0 16.49 17.52 15.46 

14.7 11.54 12.98 10.10 

15.3 11.76 13.63 9.89 
 



Highlights 

The major highlights of the manuscript are 

1. Atmospheric Inputs improve ANN performance for long term energy forecasting. 

2. The optimal number of hidden layers was 4 (100,50,20,10 neurons). 

3. The 4 layer ANN outperformed RBF, RF, SVR and GP machine learning algorithms. 

4. The model improved the energy production forecasting error to 0.4%. 

5. The results were dependent on atmospheric stability.  
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