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ARTICLEINFO ABSTRACT

Article history: A robust machine learning methodology is used toegate a site-

Received 00 December 00 specific power-curve of a full-scale isolated wihatbine operating in an

Received in revised form 00 January 00 atmospheric boundary layer to drastically improlve power predictions, and,

Accepted 00 February 00 thus, the forecasting of the monthly energy prodacéstimates. The study has
important implication in measuring the financiah$ility of wind farms by

Keywords: improving the accuracy of monthly energy estimafdse significance of the

study is that atmospheric stability and air-densitg accounted in the power
predictions of the wind turbine. Artificial Neur&letworks (ANN) machine

learning approach is used to generate multi-parmigbut models to estimate
the power produced by the wind turbine. The ANNaigeed Forward Back
Propagation (FFBP). The power- and wind-data igiobd from a 2.5 MW

wind turbine that has a Meteorological tower lodag®0m Southwest of the
wind turbine in Kirkwood, lowa, USA. The study irsteyates the role of

atmospheric boundary-layer metrics — Wind Speedpside (a measure of
stratification), Richardson Number, turbulence msiey, and wind shear as
input parameters into the ANN model. The study stigates the influence of
FFBP ANN hyper-parameters on the power predictamueacy. Comparison of
the FFBP ANN model to other power curve correctechniques demonstrated
an improvement in the Mean Absolute Error (MAEXOR6 when compared to
the density correction (the next closest). The -fimeameter 4-layer FFBP
ANN has an average energy production error of 0.d&thfe nine months while
the IEC is -3.7% and the air density correctionli®%. Finally, the study
determines the performance of the FFBP ANN modetifferent atmospheric

stability regimes (Unstable, Stable, Strongly Sgalftrongly Unstable and
Neutral) classified using two criterions - Richaydsnumber and Turbulence
intensity. The largest MAE occurs during the sgly stable regime of the
atmospheric boundary layer for both criteria.

Each keyword to start on a new line

1. Introduction
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With exploding populations in the world and the such as machine learning are becoming popular poove

need to meet their ever-increasing energy demands,
becoming critical for alternative energy sourcesbt® a
reliable form of energy. Wind energy is an effidcien
resource, and the United States wind supply is i) as
per the recent 2017 Department of Energy reportifilihe
United States, wind has the largest renewable gtoar
capacity of all renewable energies. However, fondwi

power curves. Machine learning allows for a power
prediction model to have multiple inputs (an eveeater
number than described above by power curve coorgti
Therefore, the power prediction can incorporatéikta
effects of the atmospheric boundary layer. Clifédral. [6]
used stochastic simulations, which generated tiealisnd
speed and wind turbine power data, to develop ress®pn

power to compete with the conventional generatiortree model of power prediction using turbulencerisity

sources, and to be a sustainable energy resourds, i
crucial for it to be cost-effective. Wind energycbenes
more valuable with increased accuracy of predictidn
wind-power because more if it can be transmittedht®
grid. The uncertainty in the prediction of powerdo the
stochastic nature of the wind is the ongoing chalefor
the wind power generation industry. Within a wiiagdm,
the output power of an individual wind turbine \e&riwith
the wind speed, air density, wind turbulence. Timdow
wind conditions for each wind turbine is differeaty each
wind turbine has a unique power performance curve.

at hub height and vertical wind shear. Their rassitowed
a three-fold improvement, with a reduction in potidin
scatter from 4% to 1.3%, in power estimation with the
machine-learned model. Similarly, Pelletier et[d].used
a six parameter artificial neural network to prégiower
production to identify faulty wind turbines. Thesults
showed a higher reduction in MAE compared to thesiot
power curve models. In some studies, machine ilggrn
techniques have been used with multiple variables sis
wind-speed, wind-direction, and hub-height tempermat
[12-15].

The International Standard IEC 61400-12-1 has The literature shows that including additional

provided a standard methodology for measuring theep
performance of a specific wind turbine [2]. At ttest site,
the hub height wind-speed and the power generatatieb
wind turbine are measured for a long duration pfetito
generate a significant database under varying gtheve
conditions. The power measurements implicitly ineuhe
turbulence levels at that site. A method of binagplied to
determine the power curve for that wind turbine] #ris is
referred to as site-specific power curve for thagcific
wind turbine. Figure 1 shows an example of a giecHic
power curve developed. The data were collectedyel@r
minutes as averaged wind speed measurements. gure fi
shows the significant variations of power that oaour at
each wind speed. Variations in air density and apheric
stability are leading causes for the significantatéons in
power at a given wind speed [3-5]. Thereforereheas

inputs into power curve models can improve accuracy
Models that use corrections do not fully capture th
complex nonlinearities that occur due to the atrhesp
boundary layer. Machine learning power curves oa th
other hand; have been based on data availabler riuue
utilizing metrics that quantify the atmospheric bslity.
This study is unique because it builds upon thé¢ saslies
that have shown that variations in atmosphericili#iab
cause errors in the wind turbine power curves [315]
Therefore, the machine learning algorithms usedhim
study are built using metrics that quantify atmasyh
stability.

Atmospheric Boundary Layer stratification is
generally categorized into three regimes: stabieutral-,
and unstable- stratification [16]. The stable megjioccurs,
generally, during night-time conditions where soegf@ools

been a focus to improve site-specific power curvethe air. Therefore, there is a large amount of wshdar

predictions.
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Figure 1. Site specific Power Curve

with very little turbulence [17,18]. The unstable
stratification conditions occur, generally, duritige day-
time when the surface heats the surrounding ageclo the
ground. This causes vertical fluctuations andteearge
amounts of mixing in the atmosphere. Therefore, the
unstable regime has uniform wind speeds with sicgmift
turbulent fluctuations [19-21]. Neutral conditiolgcur
when there are negligible buoyancy effects [22,23he
different stabilities create a wide range of perfance in
wind turbines [3-5,24-27]. Nielson and Bhaganagar
[28,29] showed that the day to day variations ab#ity
can lead to a wide range of energy production fstr
Their study showed that one sigma standard dewiaifo
surface heat flux resulted in a difference in eperg
production of 10%. The current study combines this
knowledge of atmospheric stability to build machine
learning algorithms to improve site-specific power
prediction.

Hence, in the current study, the focus is on

Recently, deep learning data-analytic methodsjmproving the input variables to build the powenau The



study includes variations in the atmosphere astinpio  (i.e., wind speed and air density) to the outputnfw
an Artificial Neural Network (ANN), which is a typef  turbine power). It uses a set of connecting limlesufons or
machine learning. An ANN is a tool that mimics the hidden layers) that each has a specific weighte ifputs
neurons in a brain. The study uses different methtod pass through the neurons, or hidden layers, and are
qguantify the atmospheric stability (also known asmultiplied by the weights. Therefore, each neunais a
atmospheric metrics) determined from previous neseto  functiony = ¥ I,w; wherey is the output/; is theit"
characterize the atmospheric stability as inputs ithe input, andw; is thei*® weight. The goal is to determine
ANN. the weights to minimize the error at the outpune®f the
The current study uses Feed Forward Backmain advantages of neural networks is that they'lesann”
Propagation (FFBP) ANN models to predict the powerfrom data to determine the weights. The learningucs
output of a single wind turbine. The benefit of sthi through an optimization process, where the weightdhe
approach is improved accuracy prediction of powemodel hidden layers are updated based on available
production by including atmospheric effects. training patterns [34] and compared with data thas
The objectives of the study are to known outputs. There are many numerical optimizatio
1. To determine the effectiveness of differenttechniques used to determine the weights of theonsu
atmospheric inputs, including wind speed, airThis study uses Keras library with Tensorflow, whis
density, wind shear, turbulence intensity, andopen source and free of cost, backend with the Adam
Richardson Number, used as inputs in the FFBRptimization algorithm for implementing the MLP medd
ANN models, to investigate the optimal number[35], referenced as FFBP ANN. Adam optimization is
of parameters used as inputs, and to investigateelected because it is known to work well in pti
the influence of the FFBP ANN Hyper- compared to other adaptive learning algorithms vaiHy
Parameters. robust nature to the choice of hyper parameters38p
2. To compare the error from the FFBP ANN model Adaptive Moment Estimation, popularly known as
to other power curve adjustments to quantify thethe Adam optimization algorithm is an efficient cttiastic
performance and determine how this affects theoptimization method that requires only first ordeadients
energy production estimates. with a small memory requirement [39]. This method
3. To determine the performance of the FFBP ANNcombines the advantages of the AdaGrad [40] and
model in different atmospheric stability regimes. RMSProp [41] methods. The algorithm updates the
estimates of the first and second moments of thdignts
which are the exponential moving averages of grdadie
2. Methodology (m,) and squared gradie@i,). The moving averages are
calculated asm; = gim;_;+ (1 —-B)g: and v, =

The details of the machine learning algorithms BzVe-1 + (1 — B2)g¢ with g, being the gradient of the
are discussed in section 2.1. Section 2.2 givesi¢hails of ~ Objective function with respect to the paramétat time

the wind turbine data set used for the analysis. stept .The hyper parameter$,s, € [0,1) control the
exponential decay rates of the moving averages. The
2.1. Machine Learning Algorithms moving averages are initialized using a vector’sfvthich

leads to a biased moment estimates during thealinithe
In this paper, the aim is to provide comprehensive>tePs. To counteract the bias, the moments arewechps
study on the performance of different models fadicting 7t = Me/(1 — Br) andvy = v,/(1 = B;). The parameters
the power of a wind turbine. The study compares thd®) are updated using the ruleg.,, =6, +n/
performance of two Artificial Neural Network (ANN) v (V:+€)m; withn ande being the learning rate and step
models - Feed Forward Back Propagation (FFBP) heur&iZ€ respectively [6] . Although the algorithm weriell
networks and Radial Basis Function (RBF) neuralVith the default hyper parameters, Goodfellow et[42]
networks, Random Forest Regression (RF), Suppartove Suggests that the learning rate might need to beged

Regression (SVR) and, Gaussian Process RegressiSRmetimes. . o _
(GPR) models. Instead of applying the optimization algorithm for

the whole data, the training data is split into idiatches.

Feed Forward Back Propagation (FFBP) neural  Iraining over all the mini-batches once is calledepoch
networks [43]. This study uses design of experiments [44] to

Feed forward back propagation neural networksOPtimize the baich size, number of epochs andeaging

also known as multi-layer feed forward neural netscor rate of the Adam optimization algorithm. A full tacial

multi-layer perceptron (MLP) or just back propagati design is generat_ed with 100,200,500,800 and_leo‘ﬁla
neural networks are well known type of ANNs used fo levels for batch size; 10,20,50,100 and150 asléivels for

wide variety of tasks like prediction, function humber of epochs and 0.001, 0.05 and 0.1 as thresl|
approximation or pattern classification [30,31].6TMLP for learning rate. For different network architeets;, the
model consists of one input layer, at least oneéridayer ~Study used the trial and error method to deterniire
and one output layer [32,33]. The model correlatpsits ~ values of the parameters.



The neural network architecture plays a majorrole 1. Draw a number of trees bootstrap samples from

as different network structures can result in défe original data

performances of the model [45]. The problem of ifigd 2. For each bootstrap sample, grow unpruned
the best network is considered as extremely ditfipi6]. regression tree for which at each node randomly
The two main aspects of the ANN architecture are to sample the number of predictors and choose the
determine the 1) number of hidden layers and 2)basrof best split among those variables

neurons at each layer [47]. In addition to theke,type of 3. Predict the output for test data by averaging the
activation function used in each layer also playgitical predictions from all the trees

role on the performance of the model [48]. Thevatidbn The study used the random forest algorithm by

function is used to convert the activation levelneurons  scikit-learn [63]. The version of scikit-learn is.2Q.1.
into the output signal [49]. Some of the most comlyo Random forests require at least two hyper paramdter
used activation functions are: Sigmoid, Hyperbolicset, the number of trees o{fhawd and the maximum

Tangent and Rectified Linear Units (ReLU). number of features (Maxured [64]. The value of &imators
The study uses the following parameters based ois fixed to 110 using the grid search ranging frb@nto 200
the network architecture: with an increment of 10. The default max.s value is

1) For single hidden layer model: number of epochsused as for the regression problems the empiricadg
= 1000, batch size = 150 and learning rate = 0.1default value is known to be number of featurgsy(nj
activation function of hidden layer = ReLU [65].

2) For the models with more than one hidden layer:
number of epochs = 100, batch size = 10 andupport Vector Machinesfor Regression

learning rate = 0.001, activation function for all Support vector machines based on structural risk

layers except last hidden layer = Sigmoid, lastminimization principle proposed by [66] are leain

hidden layer activation function = ReLU machines for recognizing the subtle patterns in pler

3) For all the model the linear activation function is datasets [67,68]. Initially developed for solvindnet
used for the output layer classification problems, they were extended to esdhe

All the models are retrained 10 times and the bexlel is  regression problems for promising empirical perfance
selected. [69]. The idea of the support vector regressioto isse the
kernel functions to map the initial data into thigher

Radial Basis Function (RBF) neural networks dimensional space such that the nonlinear patteansbe

RBF neural networks another popular type ofconverted into a linear problem [70] . Support \éect
ANNs are known to be the universal approximato@].[5 Regression (SVR) performance is highly dependerthen
They have a compact topology compared to otheraheurselection of kernel functions [71]. Linear, Polymal,
networks [51,52]. It involves three layers — onput, one  Sigmoid and Radial Basis Function kernels are sohtke
hidden and one output layer [20]. The input layenreects most commonly used kernels [72]. For an efficieMRS
the source neurons to the only hidden layer ohitevork.  model, the hyper parameters must be set carefully
The hidden layer applies the nonlinear transforomafiom  otherwise can be lead to over-fitting or undeiifgt[73].
the input space to hidden space [53] . Using thes§ian Thee-insensitive zone and regularization paramétare
kernel as the radial basis function, the output ten the two main hyper parameters of the model [74,7Hje
expressed ayy = YI'Gw; = Y, wiexp(—I|lx — m;l|%/ regularization parametér penalizes any deviation than the
20#) wherex is the inputym; ando; are the center and e. For higher the values @, the penalty becomes more
width of G; [54]. The two hyper parameters that are to beémportant and the SVR fits the data, whereas foalken
optimized for this network are the number of hiddadial  values of C, the penalty gets negligible and the SVR gets
basis functions which the number of centers andnailiéh ~ flat. In the same way, the higher the values @icreases
of the Gaussian kernét). The number of hidden radial the margin and the SVR tends to become flat buh wit
basis functions relate to the accuracy of the netwo lowere SVR tries to fit the data [76]. The study used SVR
approximation [55,56]. After many trial and errests, the algorithm by scikit-learn. The optimal = 3000 and
optimal value of number of radial basis function®250 ¢ = 0.01 are found using the grid search.
ando = 0.1 are found.

Gaussian Process Regression (GPR)

Random Forest Regression GPR can be viewed as an extension of standard

Random Forest regression proposed by [57] is amegression models. It is one of the most populan-no
ensemble learning technique. It combines the pmdioce parametric probabilistic models for estimating kkoox
of multiple decision trees for predicting the outpariable  functions [77]. ANNs with infinite hidden neuronsea
[58,59]. It is based on the concept of bagging wetn  considered to converge to a Gaussian Process [78].
which the trees are constructed using a subsearafom  Gaussian Process is defined as a collection oforand
sample drawn with replacement from training datagé].  variables, any finite number of which have a j@daussian
The random forest regression algorithm consists oflistribution. It is completely specified by its nmeand
following steps as explained by [62]. covariance function that determine the smoothness a



variability of the function [79]. The GPR model is wheren is the number of samples (over one hoB(h) is
constructed asy; = f(x;)) +¢ for i=12,..,n. € is the power determined from any ANN model or the alctu
assumed to be the additive independent identicallpower for a given sample, angh) is the measured time of
distributed Gaussian noise with varianeg . The the averaged sample in hours (1/6 for the 10-midata).
predictive distribution of test data is obtained byTherefore, the energy production is determined €ach
conditioning on the training data and test inp@@3][ This  hour for both the ANN models’ prediction and theuat
study uses a Gaussian Process for Machine Learnirenergy produced. The study compares the energy
(GPML) library in MATLAB for fitting the GPR model production estimates of the ANN models with other
[81]. It uses the squared exponential kernel fangating  correction models for each of the eight months dfdw
the covariance. It uses maximum likelihood apprdacin  turbine data collected. The error is determined as

GPML library to optimize all the hyper parameters

associated with the covariance kernel and the Gauss n EPg —EPg
noise. i=1 EP, Eq. 8
EPoyror = -t a

The following describes the methodology for
selecting a training dataset and testing any of AR wheren is the number of samples in a monil®,,, is the
models’ performance. A random sample is taken fthen  actual energy production, afid,, is the estimated energy
complete dataset for training. The sample size wagroduction from the model.
determined using a statistical confidence intexfab9%

and a margin of error of 2% as 2.2. Kirkwood | owa Dataset
) ) Eq. 4
= M The dataset comes from the Kirkwood/University
14 ezp(g}; p) of lowa Wind Data Project [82]. The data is froandary
e

to August of 2015. The project includes one Clipges

; ) ] MW wind turbine with Supervisory control and data

margin of error, N is the total sample size of tfega set, acquisition (SCADA) from the wind turbine and a
: 0 o .

and p is set to 50% because it is the most consevat meteorological tower 90t SW of the wind turbine as

case. The sample size was approximately. 15% of th§h0wn in Figure 2a. The SCADA data includes thevgyo
complete dataset. The same random sample is useairto production of the wind turbine, air density, thebhheight

each model. Once the optir_nization s complete,t@ged wind speed, and the standard deviation of the haighh
model can be used to predict power for the remgi@fa. \iny “speed. The meteorological tower contains
The power predictions are compared to the actualepo measurements described in Table 1. These include wi

output to evaluate any ANN model_ performance. speed, temperature, barometric pressure, and air
The study USes the following methods to E"Valuatefemperature at multiple heights. Figure 2b shows th
all the ANN functions. ~Mean Absolute Error (MAE), distribution of the Kirkwood lowa Data wind speeds
calculated as measured at hub height. 63% of the data occursceetw
and 10m/s. Only 13% occurs above 10/s and 24%
_ XitalPace = Pest Eq.5  occurs below 5n/s.
B n The goal of implementing the ANN models is to
) ) , incorporate  atmospheric  stability into the power
whereP,is the actual power,, is the estimated power preqictions.  Therefore, derived variables that rijia
using a model, and is the number of samples used (theatmospheric stability are used as inputs. The sushs
complete dataset). o turbulence intensity, Richardson Number, and wihdas
The normalized MAE is given by Eq.6. as variables that describe atmospheric stabilityd an
described each below. Turbulence intensity, shdmn
n _ Eq.8, describes the amount of turbulence in thespinere
MAE, = Li=1lPact/Pratea = Pest/Prateal A6 and relates directly to the atmospheric regime4}, The
n turbulence intensity is determined from the staddar
deviation of the horizontal wind speed as a ratithe total
horizontal wind speed. The meteorological datused
The study uses the power prediction data too determine the Richardson Number calculated in %q
he Richardson Number is a dimensionless ratiohef t
uoyancy and shear in a flow [83]. This ratio aids
classifying a flow as buoyancy dominated or shear
n dominated flow corresponding to a specific stapilégime
_ [12]. For the Richardson Number, the velocity and
Ep = Z P+ t(m) Eq. 7 temperature measurements at%.@nd 106.6n are used.
Finally, wind shear can also be used to deterrsiability

where z is the z-score based on a 99% interval, theis

MAE

whereP,,;.4iS the rated power of the wind turbine.

compute the energy production estimates. The ener
production is the integration of power for a givéme.
From the power, Energy Production is

i=1



6,12].

are used to determine atmospheric stability.

U=pz" Eq.8
Ri, =2 do,/dz Eq9
6, (dU/dz)?
Tu Eq.10
=4 q.
Tl =7
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Figure 2. (a) Wind Turbine and Meteorological Tower

layout (b) histogram of wind speeds for the Kirkwidowa

data.

Table 1 Meteorological Tower sensor description.

The met tower data determines the windashe Wind Direction
exponenta, known as the wind shear, by fitting the
velocity profile of all six wind speeds to Eq. 10.able 4
defines how the different parameters calculateln8-10

NRG Cup Vane 6.6, 10.15, 33.5, 55.8,

82.2,106.7
Barometric Pressure Not Available 6.6, 106.7
Air Temperature Not Available 6.6, 106.7

Parameter Device Height (m)
Wind Speed NRG Cup 6.6, 10.15, 33.5, 55.8,
Anemometers 82.2,106.7

3. Results
3.1. Role of input parametersin model performance

The next step was to focus on determining the
number of input parameters to be included in th8fFF
ANN model to obtain the best performing power csrve
Table 2 describes the FFBP ANN models used for the
comparisons. The study investigated two-param#isze-
parameter, and five-parameter models (the number of
inputs) as shown in Table 2.

Table 2. Description of theFBPANN Models used for comparison.

Number of Parameters ID

Parameters

2 I. Wind Speed WD
II. Density

2 I. Wind Speed WTi
IIl. Turbulence Intensity

2 I. Wind Speed WRi
Il. Richardson Number

2 I. Wind Speed WA
. a

3 I. Wind Speed WDTi
1. Density
Ill. Turbulence Intensity

3 I. Wind Speed WDRI
II. Density
Il. Richardson Number

3 I. Wind Speed WDA
II. Density
. «

5 I. Wind Speed WDTIRIA
1. Density

Ill. Turbulence Intensity
IV. Richardson Number
V. a

The IEC standard is used as the baseline of
performance. The study investigates the atmosphgrids
by using a single layer, 10 neuron, FFBP ANN. Fég8a
shows the MAE for the two-parameter cases WD, WTi,
WRIi and WA as well as the MAE for the IEC. The figu
shows the MAE is less for wind speeds belom & (the
cut in speed), it increases to a peak value betviega
m/s, and then it decreases to a minimum atr/s (rated
wind speed). The peak MAE for the IEC, WD, WTi, WRi
and WA is 141.7, 85.6, 130.0, 133.8, and 138M,
respectively. The WA case had a larger MAE at/2 and
15m/s than the other models, which was 55.1 and 75.0 ,
respectively. No other case showed similar belavibe
total error (in addition to the peak MAE) can bentified



with a weighted average MAE, where the weights are

determined based on the number of samples in eachsb

shown in Figure 2b. All two-parameter FFBP ANNs :2:;53
showed an improvement over the IEC standard, whash —0— WTi
an average MAE of 78.6W. The two-parameter FFBP 150 1 = S
ANNs WTi, WRi, WA had a total MAE of 67.3, 72.2, én £n8 A
74.9kW respectively. The improvement, compared to the
IEC, was 13.8%, 8.1%, and 4.6% respectively. The two
parameter FFBP ANN WD showed the most significant
reduction in MAE with an average MAE of 480/, or !
39% improved over the IEC. The two-parameter FFBF 50 R ’ %
ANN WD reduced the MAE by 50% at a wind speed of 9 f‘gﬁ - )
m/s when compared to the IEC. The reduction below £ S "-'\&9
m/s and above 1z /s is not as significant and it is 20% 0 ? ‘ | |
and 6% respectively. The results indicate that \Wi@ 0 5 10 15
FFBP ANN case has the highest reduction in MAE Wind Speed {rmis)
compared to all other two-parameter FFBP ANNSs. (@)

Figure 3b compares the WD FFBP ANN to the
three-parameter and five-parameter FFBP ANNSs. Hak p —
MAE for the WDTi, WDRi, WDA were 69.6, 81.3 and —+— WD
83.4kW respectively. The WDRI case has a larger MAI T 7 =&~ WDTi
below 3m/s and between 12-14/s. The total MAE 80r ,,"',M;‘ ey
(determined by a weighted average based on the ewafib YV S —&— WDTIRIA
samples in each bin as shown in Figure 2b for ca4esi, il 4 pada
WDRI, WDA were 35.3, 46.4, and 47k9V respectively.
The three-parameter FFBP ANN WDTi showed the mo
significant improvement over the two-parameter FFB 401 /= d %
ANN WD. The WDTi case reduced the peak MAE b ‘,‘}3" % l_‘_‘"
50% when compared to the IEC standard. The WD L “ﬁ:{;( Q’f\i
reduced the average MAE by 55% when compared to { ﬁf“ ,}e
IEC standard. The three-parameter FFBP ANN WDTo al¢
reduced the MAE below #:/s and above 1#/s by 38% 0
and 15% respectively when compared to the IEC. Wind Speed (m/s)

Also shown in Figure 3b is the five-parameter (b)
case WDTIRIA. WDTIRIA had a peak MAE of 641V
at 9.8m/s. The MAE at 14n/s was 18.%W, compared i re 3. Mean absolute error for the (a) IEC, two-
to 12.2kW of the WDTi case. The average MAE orameter: Wind Speed and Density (WD), Wind Speed
(determined by a weighted average based on the@weib 5nq Tyrbulence Intensity (WTi), Wind Speed and
samples in each bin as shown in Figure 2b_) forfite Richardson Number (WRi), Wind Speed anfWA); and
parameter FFBP ANN was 34k3V, a reduction of 2% ) tyo-parameter: Wind Speed and Density (WD);e¢h
from the WDTi case. Overall, the WDTi had the lowes parameter: Wind Speed, Density and Turbulence sitien

MAE of all the three-paramet_er_FFBP ANNs. The five- (WDTi), Wind Speed, Density and Richardson Number
parameter FFBP ANN WDTIRIA showed the lowest (WDRi), Wind Speed, Density and (WDA): Five

average MAE with a 2.75% improvement over the WDT'parameter (WDTIRIA).
case. The results show how including additional
atmospheric parameters as inputs can improve FABR. A The influence of the FFBP ANN hyper-

parameters were studied to optimize the FFBP ANNeho
using a five-parameter input (WDTIRiIA) because it
performed the best. Figure 4 a shows the influarfcéne
number neurons in a single layer FFBP ANN. The majo
differences occur at the peak MAE, and at wind dpee
below 5m/s. The peak MAE is 78.6, 69.4, 68.4, 67.8, and
66.2 kW for the 11, 15, 16, 20, and 30 Neuron models
respectively. The peak MAE begins to get largeeraB0
neurons (not shown in the figure). The additionalinons
reduce the peak MAE, but not the average MAE. The
average MAE is 36.2, 37.3, 34.9, 35.4, and 3K/8
respectively. The average MAE reaches a minimurb6at
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MAE (kW)
~

(kW)

MAE (k
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neurons. The average MAE increases with additionaFigure 4. Mean absolute error for the (a) SingleBFF
neurons beyond 60 because the MAE increase beloig.5 ANN with layer 11 Neurons, 15 Neurons, 16, Neurd@&es,
The increase in MAE comes from overfitting the data Neurons, and 30 Neurons (b) Optimized FFBP ANN With
lower wind speeds. layer (16 neurons), 2 layer (50, 20 neurons), 3 (80, 20
Next, the study investigates the influence of theneurons) layer, 4 layer (100,50,20,10 neurons),alayer

number of hidden layers on the MAE. The number ofFFBP ANN (200,100,50,30,11).
neurons in each layer was optimized, as describetthe
single layer example shown in the paragraph ab®be.
largest differences occur for wind speeds abovemi®
The peak MAE for each layer is 68.4, 64.2, 66.2264nd

The study compared the 4 Layer FFBP ANN with
other Machine learning models to quantify the penfance
of predicting the wind turbine power. Figure 5 sisothie
MAE for each 4 layer FFBP ANN, RBFN, RF, SVR, and

64.8 kW for the 1 layer (16 neurons), 2 layer (50, 20GP. The peak MAE is 64.3, 77.7, 80.7, 66.1 an@ &&/
neurons), 3 (100, 50, 20 neurons) layer, 4 layerespectively. The average MAE is 30.5, 45.8, 38388,
(100,50,20,10 neurons), and 5 layer FFBP ANNand 41.4kW respectively. The RBFN and RF models
(200,100,50,30,11) respectively. The average M&Ehe perform the best at the lowest wind speeds, but ladsre
34.8, 32.8, 31.5, 30.5, and 3XW respectively. Beyond 4 the highest peak MAE. The GP and SVR models have a
layers, additional layers tend to over fit the daween peak MAE that is only moderately higher than thiyer

12 and 15/s. The optimal FFBP ANN model for the five- FFBP ANN but also have a large MAE above f&s
parameter data is the 4 layer FFBP ANN with 10Q,AY) where there is significantly less data (as showirigure

10 neurons in first, second, third and fourth hiddeeyers  2b). The 4 layer FFBP ANN outperforms the other aisd
respectively. The model consists of 5 input neurionthe and has a smaller average MAE, which shows the
input layer and one neuron in the output layer. idgvork  robustness of the FFBP ANN model for wind turbine
topology for the 4 layer model is 5-100-50-20-10-1. power prediction.

80

11 Neurons 80 r
70 = 15 Neurons
w16 Neurons 70

*20 Neurons
30 Neurons

<<
MAE (
]

20+ \ / ¥ .
10 F 7/
10F
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Wind Speed (m/s) 0 5 10 15
(a) Wind Speed (m/s)
i — Figure 5. Mean absolute error for the 4 Layer FFBN,
70} o et RBFN, RF, SVR, and GP.

m—3 Layer
4 Layer
5 Layer

601 Next, in Figure 6, the 4 layer FFBP ANN is

compared to other improved power curve models used
literature: These include equivalent wind speedctvhises
the wind speeds at every height of the meteorcidgic
tower [11], a multi-power curve model which useqavi
speed and turbulence intensity filters [4], and demsity
correction method [84].
Figure 6 shows the MAE of each of the models.
i The peak MAE for the IEC, density correction, tugmece
| | . intensity filter, equivalent wind speed, and thelager
0 5 10 15 FFBP ANN are 141.7, 98.3, 135, 110.0 and G423
Wind Spesd i) respectively. The peak MAE occurs at different wind
(b) speeds, at 9.2, 8.5, 9.8, 9.2, and ®&.2s respectively.

~50F

40+

MAE (kW

30

20




Those that include turbulence intensity shift tealp MAE

to higher wind speeds. The average MAE (determined
a weighted average based on the number of samples
each bin as shown in Figure 2b was 78.5, 58.456%,
and 30.5cW/ for the IEC, Density correction, Turbulence
Intensity, Equivalent Wind Speed, and the 4 layEBF

in May. The 4 layer FFBP ANN had an average erffor o
0.4%. The 4 layer FFBP ANN model reduced the awstag
@nergy production error to 0.4%.

The FFBP ANN also performed more consistently
from month to month. Both the IEC and air density
correction underpredict from January to March but

ANN respectively. The 4 layer FFBP ANN showed overpredict during the April to August Months. Timenth

significant improvement over all other models. THeBP

to month variation in percent error is much smalterthe

ANN model reduced the peak MAE by 35% when4 layer FFBP ANN, as it remains at or below 1.09%he

compared to the density correction (the next closeslel)

month to month variations might come from the W@oia

and reduced the total MAE by 48%. The 4 layer FFBHn atmospheric conditions. For the months Jan-Mae,
ANN reduced the peak MAE by 52% and 42% and théemperatures are cooler causing a lower average air

total MAE by 65% and 44% for the turbulence filtedan
equivalent wind speed respectively. The resultsistite
importance of including both air density and atniesgc
effects into power prediction and further validatie
methodology of using FFBP ANNs in wind power
prediction.

200

— | EC

=== Density Correction
e WD

Tl Filter

Eq Wind Speed

150
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MAE (kW)

50

10
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Figure 6. Mean absolute error for the (a) IEC, two-_Totl

parameter: Wind Speed

density. Therefore, the actual energy productioli bé
higher than the estimated value for the IEC methd the
error is positive. For the months Apr-Aug the opfeoss
true, and the IEC error is positive. The improved
predictions show the ability of machine learningaid in
future wind energy estimates and for estimatingdanual
Energy Production (AEP) for future wind turbinesdan
further validates the FFBP ANN methodology. Totéet
understand the cause of monthly variations in therg of
energy production, an analysis of the atmospheaioilgty

is conducted next.

Table 3. Energy Production Error, compared to deneargy production
in percent, of different power curve models.

Month IEC Density 4 ayer
Correction FFBP
ANN
Jan 6.8% 2.4% -0.46%
Feb 10.3% 5.1% 1.09%
Mar 4.9% 3.0% 0.67%
Apr -1.0% 0.2% -0.1%
May -6.3% -2.1% 0.0%
Jun -11.7% -4.6% 0.39%
Jul -12% -5.3% 0.38%
Aug -20% -14.1% 0.96%
-3.7% -1.9% 0.4%

The energy production is calculated by integrating3-2- Role of atmospheric stability on FFBP ANN model efficacy

the power predictions over time as shown in EqTable 3
shows the error, as determined by Eq. 8, of thethhpn

To understand the effect of atmospheric stability

energy production estimates (compared to the actudln the errorinthe FFBP ANN model, the study peried

energy production) for the IEC model, density coticn

the following analysis. The results between theveative

model, and the 4 layer FFBP ANN model. For the IEC(negative Richardson Number) and stable (positive
standard, the highest error is 20% and is recorded f Richardson Number) atmospheric stability conditidos

August, and the average error over the entire 8tinsois

the 4 layer FFBP ANN were compared. 37% of the data

3.7%. The density correction improves the energyhad a Richardson number above zero. Figure 7 shioavs
predictions with a maximum error of 14.1% in the mon results. The convective conditions had a smalleakpe

of August and an average error of 1.9%. The a@eera
errors for the IEC and density correction were%3and -
1.9%, which are near the expected 2-5% in the lilezat
[85]. The 4 layer FFBP ANN further enhances thergye
production estimates by including atmospheric effec
using turbulence intensity. The FFBP ANN modelvebd

a max error of 1.09% during February and an errdd%f

MAE, which was 61kWcompared to 7&W. The MAE
for the convective conditions was smaller betwebe t
wind speeds of 7-1in/s. This might result because the
convective atmosphere is more mixed. Thereforeretls
less of a variation in wind speed and density thhmut the
height of the wind turbine. The MAE during the centive
conditions is larger for wind speeds abovenl& (35kW
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compared to 2@W), which is the near rated wind speed 107, 61.5, 73.0, and 642V and occur at 10.m/s, 11.9

for the wind turbine. Although, the wind speedewab12 m/s, 9.2m/s, and 10.5m/s for the S, U, N, SU

m/s only account for 5% of the total wind speed samplesrespectively. The peak MAE is two times larger 8%

This might be due to high turbulence causing thadwi than for N.

speed to fluctuate above and below the rated wieed. The turbulence intensity criteria is used to group
the data in Figure 8b. Using the turbulence iritgns
criteria to define the regimes shows different kssuThe

: unstable regime showed the lowest peak MAE. The SS

p— group had the largest MAE of 2%V at a wind speed of

80k 10.5m/s. The other peak MAEs were 151, 78.7, 59.9, 79.3

kW and occurred at 10.5, 9.8, 9.2, and 2,6 for the S,

N, U, and SU cases respectively. The N regime stowe

100

2 B higher MAE for wind speeds betweemis and 12m/s
o with an increase of 20% compared to the unstablieneg
< ol The SU regime showed higher MAE for wind speed432-

m/s that was five times larger than the U regime. sThi
matches the result in Figure 7 for the convectivABJ
a0r These high wind speeds only represent 5% of thd tota
samples as shown in Figure 2b. Both the S and §8es
‘ ‘ ‘ showed higher MAE for wind speeds betweem /& and
0 5 10 15 12m/s with the SS being eight times larger and the stabl
Wind Speed i) being three times larger than the U regime. It &hdie
noted that using turbulence intensitydetermine stability
) ) _ showed S and SS regimes made up 5% of the dataaghere
Figure 7. Mean Absolute Error for convective atmf@sit  he Richardson Number showed 23% of the data iS@e
stability (negative Richardson Number) and stable and SS regimes. Therefore, the larger error migime
atmospheric stability (positive Richardson Number) from the small number of statistical values foiirtirag the
conditions. FFBP ANN. The peak MAE for both S and SS using
either method is much larger than the other regimes

s : '‘Overall, the state of the atmosphere has a sigmifieffect
the the classifications shown in Table 4 were uSettle 4 . ihe performance of the 4 layer FFBP ANN, in

shows the fiye stability regimes that were obtaiue'nl)g & particular, SS and S conditions produce the lariy6sE
range of Richardson Numbers and turbulence intensitpanveen 7-12n/s.

values [25,26]. The classifications are used taestigate

further how the atmospheric stability affects th&Bland

are Strongly Unstable (SU), Unstable (U), Neutrdd), (

To group data by atmospheric stability conditions

Stable (S), and Strongly Stable (SS) conditions. 150
— SU
Table 4 Definition of stability regimes for differeparameters. U
— N
: S
Stability Name Ri[26] TI [25] 100k Ss
Strongly Unstable suU <-0.2 >0.2 s [
Unstable U -0.2t0-0.1 0.13t00.2 u‘f:
Netrual N -0.1t00.1 0.1t00.13 <EE
Stable S 0.1t00.25 0.08100.1 sl
Strongly Stable SS >0.25 <0.08
An analysis is conducted by using one of the two
criteria, Richardson Number or turbulence intenstty

classify the atmospheric stability as shown in Fég8. As 0 5 1'0 1‘5
seen in Figure 8a, when using the Richardson Number Wind Speed (m/s)
criteria, the strongly stable SS regime shows #rgelst (a)

peak MAE of 14%W at 10.5m/s. The SS case begins to
deviate to the peak MAE atni/s. The peak MAEs are



11

training (or over fitting) especially at the highdathe low
— wind speeds. This finding suggests that the FFBEINA
e ] could further reduce the power prediction errorusyng
250r1 —_—nN hybrid combinations of machine learning models Hame
25 wind speed and stability [88]. Additionally, theudy
200 investigated the performance based on the number of
hidden layers. The study found the 4 layer FFBRNAMd
150 the lowest average MAE. Again, adding more layers
A creates over fitting for high wind speeds (abovenig
100 ' where there are a smaller number of samples.
~ The study investigated the robustness of the FFBP
// ANN by comparing other machine learning techniques
w_/ ' such as Radial based function (RBF), Random Forest
0 ‘ ‘ : Regression (RF), Support Vector Regression (SVR) an
0 5 _ 10 15 Gaussian Process Regression (GP). The 4 layer FFBP
Wind.Spsed, (6nis) ANN had a smaller average MAE than the other tested
(®) models. Specifically, the 4-layer FFBP ANN redudkd
MAE above 12 m/s where there are a smaller number o
samples to draw into the training set. Li and B8]
performed a similar comparison for wind speed esiiom
and showed that the best performing algorithm depén
on the makeup of the data set tested. Implemertkisy
methodology on more data sets will help to improve
4. Discussion robustness of the model. Additionally, the study
investigated the upper and lower 95% confidencentisu
In summary, the 4 layer FFBP ANN with wind of MAE for the 4 layer network, shown imable 5 of
speed, air density, turbulence intensity, Richamdso Appendix A. The Average MAE for the 4 layer networ
number, and wind shear was selected to compare witlyas 30.45kW. The upper and lower bounds were 30.81
other power curve models due to its ability to freéile  and 30.09kW respectively. The small deviation in the
complex relationship between the inputs and thepwut upper and lower bounds also shows the robustnetse of
The 4 layer FFBP ANN showed a reduction in peak MAEjayer model.
and average MAE compared to other models that corre The current study used FFBP ANNSs to develop a five-
for atmospheric stability. The FFBP ANN reduced pleak parameter power curve using wind speed, density, an
and average power curve MAE by 35% when compared t@rbulence intensity, Richardson Number, and Wineas
the air density correction model, which was the tnex(measurements of atmospheric stability). The ngvelt
closest. The reduction in MAE from the 4 layer FFBPthe approach was to select specific atmosphericitsnp
ANN power curve led to a reduction in the erroreaergy  shown to affect wind turbines from previous literat
production estimates. The 4 layer FFBP ANN had amhe novelty led to an improved understanding on the
average energy production error of 0.4% for the nineatmospheric effects on wind turbines.  Specifigally
months while the IEC was -3.7% and the air densititurbulence intensity did not have a substantialdat@as an

correction was -1.9%. Similarly, Manobel et ab][8sed  input until after wind density was also includedamiang:
Gaussian Processes to reduce the AEP of a winéhéurb

from 1.98% to 0.71% although the current study fesumn « Density should be included as the second
incorporating atmospheric stability as inputs inte 4 parameter in power prediction models
layer FFBP ANN. The study showed how atmospheric

stability parameters can be inputs into FFBP ANNs t  « Not incorporating density in atmospheric studies

300

MAE (kW)

50 -

Figure 8. Comparison of MAE for different stability
regimes using a) Richardson Number, and b) turlzelen
intensity.

improve wind power forecasting. could hide the true atmospheric effects

Ata [87] described some limitations of FFBP
ANNs which include over training, extrapolation @, « Other atmospheric studies might benefit by
and network optimization. This work did not inspect implementing a density correction before
potential solutions for over-fitting, such as irtsey determining atmospheric effects on wind power
dropout rates in the analysis, since it would ggobe the curves
scope of our research. The hyper-parameters for the
artificial neural network were optimized to mitigathese The easiest implementation of the above methodology

limitations. The study used a full factorial desitp test would be for manufacturers to develop the FFBP ANNs
the design space of the hyper parameters. Thg &tudd  and give the resulting model to operators to useaas
that for a single layer FFBP ANN, 16 neurons pretlthe  “plack-box”. The ANN model could replace power cesv
optimal MAE. Adding additional layers creates overthat manufacturers already develop. Once the misdel
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created, there is little computational power reegi(the 5 conclusions
current results were performed <1s on a single gzsar).
Since the ANNs were built using open source softywtre The study successfully implemented a 4 layer

only addit_ional cos’Fs would be for additional semsesed Feed Forward Back Propagation (FFBP) Artificial Keu

to determine the Richardson number. Although,s_(ﬂumly ~ Networks (ANN) to develop an improved power curge f
showed that the three-parameter ANN (not includingsite_specific power curves and energy predictiorEhe
Richardson number as an input), using wind speesity,  siudy compared a variety of different inputs foe fFBP
and turbulence intensity, also showed improvedanN power curve. The five-parameter FFBP ANN (with
performance. These three parameters are alrea@ly usying speed, air density, turbulence intensity, Ridson
when manufactures follow the IEC standard, andefioee, Number, and wind shear) showed the lowest MAE. The
using a three-parameter FFBP ANN would not increb_lee FFBP ANN improved the performance of the power eurv
cost to above the status quo. The above methodd®gy gyer other methods that use atmospheric stabilitieasity
computational inexpensive, can easily replace otrre ig correct the power curve. The FFBP ANN redudes t
power curves (already have the measurements), Wagtal Mean Absolute Error (MAE) by 48% over the wind
developed with open-source technologies, and ceml&  gensity correction used and by 59% compared to E@ |
performed with simple toolkits (I.E. Matlab ANN i)  ethod. Using the FFBP ANN also reduced the eimor
Wh_lch make it a novel, practical, and cost effeeolution  agtimated energy production to 0.4% from to 2-4% from
to Improve accuracy. ] the IEC and density correction.

The 4-layer FFBP ANN model improved power The 4 layer FFBP ANN also reduced the MAE
predictions by 48% (total MAE) over the wind density gyer other machine learning algorithms tested, iipalty
correction and 59% above the IEC standard used iRadial based function (RBF), Random Forest Regassi
industry. The three-parameter ,FFBP ANN directiyueed (RF), Support Vector Regression (SVR) and Gaussian
the energy production estimate’s errors. The redipcever  process Regression (GP).  This work  successfully
prediction errors reduced the energy estimate ®rfirom employed the FFBP NN to forecast a time seriesfutire
3.7% to 0.4%. These results show improvements ovefork, it would be interesting to investigate thecwacy
other parametric and not parametric models thar@19y  petween other time-series efficient networks, sashthe
production error of 0.6% to 2.11% [86]. Reducing @yer FEp NN versus Recurrent Neural Network alternative
estimates has potential cost savings by lowering,ch as the long-short term memory (LSTM) andGR
inefficiencies, curtailment, shortfalls, and loadedding.  5rchitectures. The 4 layer FFBP ANN had a smaller
Lew et al. [89] described the economic value ofnovng  4yerage MAE compared to the other methods tested!, a
wind power predictions. Their study showed thathvd 150 reduced the MAE above b¥s where there was less
10% improvement in wind power predictions would, yata to draw into the training set. The 4 layer elaso
assuming 14% wind energy penetration, would incur @imited over fitting compared to the 5 layer model.
savings of $140M. As penetration increases, thasigs The 4 layer FFBP ANN performance was
become even more significant. dependent on atmospheric stability. At low wineeqs of

The performance of the FFBP ANN was dependent Ofess than 7n/s there is not a significant difference in
the stability state of the atmosphere. When tleh&tson  \AE between the different atmospheric stabilityinees.
Number criteria were used for classification of aspheric  The MAE was lower in unstable conditions for wind
stability, the strongly stable data showed the ésgtpeak speeds between 7 -Ii/s using either the Richardson
MAE of 143 kW and the stable conditions showed thenymper or turbulence intensity criterion. The stéabihd
second highest peak MAE of 1&W. The unstable gyongly stable regimes had a large MAE betweert 7-1
conditions showed a peak of 720V, but the peak /s for both the criterion. The strongly unstable regj
occurred at & higher wind speed of 1thfs. This wind  \hen using the turbulence intensity criteria, hakiigher
speed was higher than the peak MAE for the othefjaE at high wind-speeds above #i/s. When comparing
categories, which fell between 9.2-10ws/s . When ppgp ANN performance by separating into five sigpil
turbulence intensity was used as the classificatiiteria, regimes, strongly stable conditions had the largesik

the strongly stable conditions also produced thghést  \AE for both criteria, but it also has the smallsttistical
MAE, but it was 27%W. The stable conditions had the samples to perform the analysis and train the FAER.

second highest MAE of 158W . The strongly unstable
MAE had a peak of 79.8BW that occurred at 124 /s, Acknowledgements
which is a higher wind speed than the other peakeEBIA

The results suggest that the FFBP ANN performasce itnhe authors acknowledge the work of those thaupeand
dependent on the atmospheric stability regime,oah o formed the the Kirkrood/University of lowa Wiilthta
some of this error might be from the smaller st&é$  piact and for making the data publically accdesib

number of occurrences of certain stability regimesTacc for use of the super computing, and Dr. Malgki
Therefore, the three-parameter FFBP ANN would rm®t b4 provided guidance on the use of fhe ANNSs.

trained with as many samples of these cases.
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Appendix A
Table 5. Upper and Lower bounds for the 4 Layer MAE
4 Layer ANN

Wind MAE UB (kW) LB (kW)

Speed (kW)

(m/s)

2.8 15.7¢ 15.9( 15.6¢
3.C 12.04 12.0¢ 12.0Z
3.7 13.5¢ 13.5¢ 13.51
4.4 16.9( 16.92 16.8i
5.1 18.7¢ 18.7¢ 18.7¢
5.8 21.1( 21.1: 21.0¢
6.4 26.62 26.6¢ 26.5¢
7.1 35.3¢ 35.3i 35.3(
7.8 46.9¢ 46.9¢ 46.8¢
8.5 53.6¢ 53.72 53.6(
9.2 64.2¢ 64.3i 64.1¢
9.¢ 62.3] 62.52 62.27
10.€ 60.6¢ 60.8: 60.4i
11.2 45.02 45.1¢ 44.8i
11.¢€ 31.72 32.1¢ 31.2i
12.€ 25.9: 26.6( 25.2¢
13.2 18.6: 19.4: 17.8¢
14.C 16.4¢ 17.52 15.4¢
145 11.5¢ 12.9¢ 10.1(
15.2 11.7¢ 13.6: 9.8¢




Highlights
The major highlights of the manuscript are

Atmospheric Inputs improve ANN performance for long term energy forecasting.
The optimal number of hidden layers was 4 (100,50,20,10 neurons).

The 4 layer ANN outperformed RBF, RF, SVR and GP machine learning algorithms.
The model improved the energy production forecasting error to 0.4%.

The results were dependent on atmospheric stability.
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